ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 184]      



Задача 55273

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Докажите справедливость следующих формул для площади треугольника:

S = $\displaystyle {\frac{a^{2}\sin \beta \sin \gamma}{2\sin \alpha}}$,

S = 2R2sin$\displaystyle \alpha$sin$\displaystyle \beta$sin$\displaystyle \gamma$,

где $ \alpha$, $ \beta$, $ \gamma$ — углы треугольника, a — сторона, лежащая против угла $ \alpha$, R — радиус описанной окружности.

Прислать комментарий     Решение


Задача 55275

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 8, AC = 6, $ \angle$BAC = 60o. Найдите биссектрису AM.

Прислать комментарий     Решение


Задача 55311

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Точка D лежит на стороне BC равнобедренного треугольника ABC (AB = CB), причём CD = $ {\frac{1}{4}}$CB, $ \angle$ACB = arccos$ {\frac{\sqrt{2}}{\sqrt{3}}}$, AD = $ {\frac{3}{4}}$. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55312

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Точка D лежит на стороне AB равнобедренного треугольника ABC (AB = CB), причём AD = $ {\frac{4}{5}}$AB, $ \angle$BAC = arccos$ {\frac{\sqrt{5}}{\sqrt{6}}}$, CD = 7. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 102308

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD ( AB$ \Vert$CD) диагонали AC = c, BD = $ {\frac{\sqrt{3}}{\sqrt{2}}}$c. Найдите площадь параллелограмма, если $ \angle$CAB = 60o.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .