ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1221]      



Задача 78191

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9

Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.
Прислать комментарий     Решение

Задача 78194

Темы:   [ Обратный ход ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10

Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.
Прислать комментарий     Решение


Задача 78532

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7

При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?
Прислать комментарий     Решение


Задача 78538

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9,10

Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.
Прислать комментарий     Решение


Задача 78562

Темы:   [ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 10,11

Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .