Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1224]
Дано натуральное число n. Рассматриваются такие тройки различных
натуральных чисел (a, b, c), что a + b + c = n. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
а) K(n) > n/6 – 1;
б) K(n) < 2n/9.
Дан выпуклый восьмиугольник ABCDEFGH, у которого все внутренние углы равны между собой, а стороны равны через одну – AB = CD = EF = GH,
BC = DE = FG = HA (будем называть такой восьмиугольник полуправильным). Проводим диагонали AD, BE, CF, DG, EH, FA, GB и HC. Среди частей, на которые эти диагонали разбивают внутреннюю область восьмиугольника, рассмотрим ту, которая содержит его центр. Если эта часть – восьмиугольник, он снова является полуправильным (это очевидно); в этом случае в нём проводим аналогичные диагонали, и т. д. Если на каком-то шагу центральная фигура не является восьмиугольником, процесс заканчивается. Докажите, что если этот процесс бесконечный, то исходный восьмиугольник – правильный.
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой целой точке числовой оси расположена лампочка с кнопкой, при
нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.
|
|
Сложность: 4- Классы: 7,8,9
|
Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3,
..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом n < 1000). Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.
|
|
Сложность: 4- Классы: 7,8,9
|
Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов n > m. Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.
Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1224]