Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 1221]
Световое табло состоит из нескольких ламп, каждая из которых может находиться в двух состояниях (гореть или не гореть). На пульте несколько кнопок, при нажатии каждой из которых одновременно меняется состояние некоторого набора ламп (для каждой кнопки – своего). Вначале лампы не горят.
а) Докажите, что число различных узоров, которые можно получить на табло, – степень двойки.
б) Сколько различных узоров можно получить на табло, состоящем из mn лампочек, расположенных в форме прямоугольника размером m×n, если кнопками можно переключить как любой горизонтальный, так и любой вертикальный ряд ламп?
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется кусок цепи из 60 звеньев, каждое из которых весит 1 г. Какое
наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно
было составить все веса в 1 г, 2 г, 3 г, ..., 60 г (раскованное звено
весит тоже 1 г)?
|
|
Сложность: 4 Классы: 8,9,10
|
Если дан ряд из 15 чисел
a1, a2,..., a15, (1)
то можно написать второй ряд
b1, b2,..., b15, (2)
где
bi(
i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших
ai.
Существует ли ряд чисел
ai, если дан ряд чисел
bi:
1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?
|
|
Сложность: 4 Классы: 9,10,11
|
Отрезок длиной 3
n разбивается на три равные части. Первая и третья из них
называются отмеченными. Каждый из отмеченных отрезков разбивается на три части,
из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока
не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются
отмеченными точками. Доказать, что для любого целого
k(1
k3
n) можно
найти две отмеченные точки, расстояние между которыми равно
k.
|
|
Сложность: 4 Классы: 8,9,10
|
Число
A делится на 1, 2, 3, ..., 9. Доказать, что если 2
A представлено в виде суммы натуральных чисел, меньших 10, 2
A =
a1 +
a2 + ... +
ak, то из чисел
a1,
a2, ...,
ak можно выбрать часть, сумма которых равна
A.
Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 1221]