ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 314]      



Задача 110020

Темы:   [ Разбиения на пары и группы; биекции ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

Прислать комментарий     Решение

Задача 115461

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Дан такой набор из 2009 чисел, что если каждое число в наборе заменить на сумму остальных чисел, то получится тот же набор.
Найдите произведение всех чисел набора.

Прислать комментарий     Решение

Задача 116539

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

Прислать комментарий     Решение

Задача 78191

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9

Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.
Прислать комментарий     Решение

Задача 78532

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7

При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 314]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .