ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 314]      



Задача 32040

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10

Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
  а) число всех счастливых билетов чётно;
  б) сумма номеров всех счастливых билетов делится на 999.

Прислать комментарий     Решение

Задача 34921

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3

а) На отрезке  [0, 1]  задано такое множество M, являющееся объединением нескольких отрезков, что расстояние между любыми двумя точками из M не равно 1/10. Докажите, что сумма длин отрезков, составляющих M, не больше ½.

б) Верно ли это же утверждение, если заменить 1/10 на ⅕?

Прислать комментарий     Решение

Задача 34922

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Обыкновенные дроби ]
Сложность: 3

Пусть p – простое число, большее 2, а  m/n = 1 + ½ + ⅓ + ... + 1/p–1.  Докажите, что m делится на p.

Прислать комментарий     Решение

Задача 35411

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено 2000 синих и одна красная точка. Рассматриваются всевозможные выпуклые многоугольники с вершинами в этих точках. Каких многоугольников больше – тех, у которых есть красная вершина, или тех, у которых нет?

Прислать комментарий     Решение

Задача 77985

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 9

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 314]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .