ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 314]      



Задача 65142

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 6,7

Автор: Фольклор

Из натуральных чисел от 1 до 100 выбрано 50 различных. Оказалось, что сумма никаких двух из них не равна 100.
Верно ли, что среди выбранных чисел всегда найдется квадрат какого-нибудь целого числа?

Прислать комментарий     Решение

Задача 65574

Темы:   [ Разбиения на пары и группы; биекции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.

Прислать комментарий     Решение

Задача 88282

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 6,7,8

В небольшом шотландском городке стояла школа, в которой учились ровно 1000 школьников. У каждого из них был шкаф для одежды – всего 1000 шкафов, причём шкафы были пронумерованы числами о 1 до 1000. А ещё в этой школе жили привидения – ровно 1000 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала первое привидение открыло все шкафы; потом второе привидение закрыло те шкафы, номер которых делился на 2; затем третье привидение поменяло позиции (то есть открыло шкаф, если он был закрыт, и закрыло – если он был открыт) тех шкафов, номер которых делился на 3; следом за ним четвёртое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т.д. Как только тысячное привидение поменяло позицию тысячного шкафа, пропел петух, и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Прислать комментарий     Решение

Задача 97815

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от 1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их сумма равна 987654321.
  а) Доказать, что найдутся хотя бы две кондиционные пары   ((a, b)  и  (b, a)  – одна и та же пара).
  б) Доказать, что кондиционных пар – нечётное число.

Прислать комментарий     Решение

Задача 107723

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В какой из групп сумма всех цифр, используемых для записи чисел, больше и на сколько?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 314]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .