Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]
|
|
|
Сложность: 3+ Классы: 6,7,8
|
Доказать, что в любой бесконечной арифметической прогрессии из натуральных чисел
a) имеется бесконечно много составных чисел.
б) имеется или бесконечно много квадратов, или ни одного.
Докажите, что (a/b + b/c + c/a)² ≥ 3(a/c + c/b + b/a) для трёх действительных чисел a, b, c, не равных 0.
|
|
|
Сложность: 3+ Классы: 10,11
|
Произведение четырёх последовательных положительных нечётных чисел оканчивается на 9. Найдите две предпоследние цифры этого произведения.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству
(x1 – 3)3 + (x2 – 3)3 + (x3 – 3)3 = 0.
Двадцать пять монет раскладывают по кучкам следующим образом. Сначала их произвольно разбивают на две группы. Затем любую из имеющихся групп снова разбивают на две группы, и так далее до тех пор, пока каждая группа не будет состоять из одной монеты. При каждом разбиении какой-либо группы на две записывается произведение количеств монет в двух получившихся группах. Чему может быть равна сумма всех записанных чисел?
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]