ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



Задача 107776

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Инварианты ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 8,9,10

Несколько населённых пунктов соединены дорогами с городом, а между ними дорог нет. Автомобиль отправляется из города с грузами сразу для всех населённых пунктов. Стоимость каждой поездки равна произведению веса всех грузов в кузове на расстояние. Докажите, что если вес каждого груза численно равен расстоянию от города до пункта назначения, то общая стоимость перевозки не зависит от порядка, в котором объезжаются пункты.

Прислать комментарий     Решение

Задача 67332

Темы:   [ Геометрическая прогрессия ]
[ Многочлены (прочее) ]
[ Тождественные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3
Классы: 10,11

Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.
Прислать комментарий     Решение


Задача 97944

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Задача 61512

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Обозначим через d(n) количество разбиений числа n на различные слагаемые, а через l(n) – на нечётные. Докажите равенства:

  а)  d(0) + d(1)x + d(2)x² + ...  =  (1 + x)(1 + x²)(1 + x³)...;

  б)  l(0) + l(1)x + l(2)x² + ...  =  (1 – x)–1(1 – x³)–1(1 – x5)–1...;

   в)  d(n) = l(n)   (n = 0, 1, 2, ...).

(Считается по определению, что  d(0) = l(0) = 1.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .