Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 50]
|
|
Сложность: 3 Классы: 10,11
|
Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F лежит на ребре CD и 2DF = FC, точка S лежит на прямой AB, AB = 3BS и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?
|
|
Сложность: 3+ Классы: 10,11
|
Для какого наибольшего n можно выбрать на поверхности куба n точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами
правильного (плоского) n-угольника.
|
|
Сложность: 3+ Классы: 10,11
|
Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью
ABC на плоскость. Точка F – середина ребра CD,
точка S лежит на прямой AB, S ≠ A, AB = BS. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?
|
|
Сложность: 3+ Классы: 10,11
|
В правильной треугольной пирамиде ABCD длина бокового ребра равна
12, а угол между основанием ABC и боковой гранью равен
. Точки K,
M, N – середины рёбер AB, CD,
AC соответственно. Точка E лежит на отрезке KM и 2ME
= KE. Через точку E проходит плоскость П перпендикулярно отрезку
KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь
сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.
|
|
Сложность: 3+ Классы: 10,11
|
В правильной треугольной пирамиде ABCD сторона основания
ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен
. Точки K, M,
N – середины отрезков AB, DK, AC соответственно,
точка E лежит на отрезке CM и 5ME = CE. Через точку E
проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость
П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние
от точки N до плоскости П.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 50]