ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 353]      



Задача 116607

Темы:   [ Ребусы ]
[ Задачи с неравенствами. Разбор случаев ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Прислать комментарий     Решение

Задача 116658

Темы:   [ Математическая логика (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?

Прислать комментарий     Решение

Задача 116958

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 5,6,7

13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?

Прислать комментарий     Решение

Задача 116967

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

Решите ребус:  ЛЕТО + ЛЕС = 2011.

Прислать комментарий     Решение

Задача 35338

Темы:   [ Математическая логика (прочее) ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10

При построении восемь мальчиков разместились так, что 1) А был впереди Б и В; 2) Б - впереди К через одного;
3) Л впереди А, но после Д; 4)В - после Е через одного;
5) Д - между Б и Г; 6) Е - рядом с К, но впереди В.
В каком порядке выстроились мальчики?
Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .