Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 353]
В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?
Замените буквы цифрами (все цифры должны быть различными) так, чтобы получилось верное равенство: A : B : C + D : E : F + G : H : I = 1.
|
|
Сложность: 3+ Классы: 6,7,8,9,10
|
В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.
После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из всех листков. В каждом листке осталось три кандидата. Поэтому первое место стало стоить 2 очка, второе – 1 очко, а третье – 0 очков. Очки просуммировали заново.
Могло ли случиться так, что кандидат, который прежде имел больше всех очков, после самоотвода В получил меньше всех?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Известно, что вруны всегда врут, правдивые всегда говорят правду, а хитрецы могут и врать, и говорить правду. Вы можете задавать вопросы, на которые есть ответ "да" или "нет" (например: "верно ли, что этот человек – хитрец?").
a) Перед вами трое – врун, правдивый и хитрец, которые знают, кто из них кто. Как и вам это узнать?
б) Перед вами четверо – врун, правдивый и два хитреца (все четверо знают, кто из них кто). Докажите, что хитрецы могут договориться отвечать так, что вы, спрашивая этих четверых, ни про кого из них не узнаете наверняка, кто он.
|
|
Сложность: 3+ Классы: 6,7,8
|
Состоялся матч по футболу 10 на 10 игроков между командой лжецов (которые всегда лгут) и командой правдолюбов (которые всегда говорят правду). После матча каждого игрока спросили: "Сколько голов ты забил?" Некоторые участники матча ответили "один", Миша сказал "два", некоторые ответили "три", а остальные сказали "пять". Лжёт ли Миша, если правдолюбы победили со счётом 20 : 17?
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 353]