ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 35642

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9

Пол комнаты площадью 6 м² покрыт тремя коврами, площадь каждого из которых равна 3 м².
Докажите, что какие-то два из этих ковров перекрываются по площади, не меньшей 1 м².

Прислать комментарий     Решение

Задача 60439

Темы:   [ Формула включения-исключения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Сколько существует целых чисел от 1 до 33000, которые не делятся ни на 3, ни на 5, но делятся на 11?

Прислать комментарий     Решение

Задача 76449

Темы:   [ Формула включения-исключения ]
[ Делимость чисел. Общие свойства ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
Прислать комментарий     Решение


Задача 60437

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9,10

Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Прислать комментарий     Решение

Задача 60440

Темы:   [ Формула включения-исключения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10

Сколько существует целых чисел от 1 до 1000000, которые не являются ни полным квадратом, ни полным кубом, ни четвёртой степенью?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .