Страница:
<< 14 15 16 17 18
19 20 >> [Всего задач: 98]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
а) (1 + x + ... + x9)3(1 + x–1 + ... + x–9)3 = x27 + ... + a1x + N + a1x + ... + x–27;
б) (1 + x + ... + x9)6 = 1 + ... + Nx27 + ... + x54.
в) Найдите число счастливых билетов.
|
|
Сложность: 4 Классы: 7,8,9,10
|
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
1) любая фигура с любого поля бьёт не более 20 полей и
2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
|
|
Сложность: 5 Классы: 8,9,10
|
Каждая сторона правильного треугольника разбита на n равных отрезков, и
через все точки деления проведены прямые, параллельные сторонам. Данный
треугольник разбился на n² маленьких треугольников-клеток.
Треугольники, расположенные между двумя соседними параллельными прямыми,
образуют полоску.
а) Какое наибольшее число клеток можно отметить, чтобы никакие
две отмеченные клетки не принадлежали одной полоске ни по одному из трёх
направлений, если n = 10?
б) Тот же вопрос для n = 9.
|
|
Сложность: 5 Классы: 8,9,10
|
В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.
Страница:
<< 14 15 16 17 18
19 20 >> [Всего задач: 98]