ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 275]      



Задача 105129

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найдите все целые числа x и y, удовлетворяющие уравнению  x4 – 2y² = 1.

Прислать комментарий     Решение

Задача 105172

Темы:   [ Задачи на проценты и отношения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?

Прислать комментарий     Решение

Задача 105216

Темы:   [ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Найти все несократимые дроби а/b, представимые в виде b,а (запятая разделяет десятичные записи натуральных чисел b и а).

Прислать комментарий     Решение

Задача 109954

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ НОД и НОК. Взаимная простота ]
[ Целочисленные и целозначные многочлены ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?

Прислать комментарий     Решение

Задача 116592

Темы:   [ Четность и нечетность ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Петя выбрал натуральное число  a > 1  и выписал на доску пятнадцать чисел  1 + a,  1 + a²,  1 + a³,  ...,  1 + a15.  Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .