Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 275]
а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.
б) На доске выписано 100 целых чисел. Известно, что для любых
восьми из этих чисел найдутся такие девять из этих чисел, что среднее
арифметическое этих восьми чисел равно среднему арифметическому этих девяти
чисел. Докажите, что все числа равны.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Имеется семь стаканов с водой: первый стакан заполнен водой наполовину,
второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным а) на 1/12; б) на ⅙?
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение xn + a1xn–1 + ... + an–1x + an = 0 с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.
|
|
Сложность: 4- Классы: 9,10
|
Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?
|
|
Сложность: 4- Классы: 8,9,10
|
Даны различные натуральные числа a, b. На координатной плоскости
нарисованы графики функций y = sin ax, y = sin bx и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции y = sin cx проходит через все отмеченные точки.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 275]