Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 277]
|
|
|
Сложность: 4- Классы: 9,10
|
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).
|
|
|
Сложность: 4- Классы: 8,9,10
|
Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.
б) На доске выписано 100 целых чисел. Известно, что для любых
восьми из этих чисел найдутся такие девять из этих чисел, что среднее
арифметическое этих восьми чисел равно среднему арифметическому этих девяти
чисел. Докажите, что все числа равны.
|
|
|
Сложность: 4- Классы: 7,8,9,10
|
Имеется семь стаканов с водой: первый стакан заполнен водой наполовину,
второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным а) на 1/12; б) на ⅙?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение xn + a1xn–1 + ... + an–1x + an = 0 с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 277]