ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

Вниз   Решение


Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 61089

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Правильные многоугольники ]
Сложность: 2
Классы: 9,10,11

Докажите, что числа wk  (k = 0, ..., n – 1),  являющиеся корнями уравнения  wn = z,  при любом  z ≠ 0  располагаются в вершинах правильного n-угольника.

Прислать комментарий     Решение

Задача 61079

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Докажите, что квадратные корни из комплексного числа  z = a + ib  находятся среди чисел

w = ± ± i .
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?

Прислать комментарий     Решение

Задача 61080

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Вычислите
  а)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

Прислать комментарий     Решение

Задача 61081

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Решите в комплексных числах следующие квадратные уравнения:
  а)  z2 + z + 1 = 0;   б)  z2 + 4z + 29 = 0;   в)  z2 – (2 + i)z + 2i = 0;   г)  z2 – (3 + 2i)z + 6i = 0;   д)  z2 – (3 – 2i)z + 5 – 5i = 0;   е)  z2 – (5 + 2i)z + 5 + 5i = 0.

Прислать комментарий     Решение

Задача 61083

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3-
Классы: 9,10,11

Как выглядит формула для корней биквадратного уравнения   x4 + px2 + q = 0,  если  p2 – 4q < 0?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .