ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 112]
Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?
В последовательности троек целых чисел (2, 3, 5), (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.
Пусть a и b – два положительных числа, и a < b. Определим две последовательности чисел {an} и {bn} формулами: a0 = a,   b0 = b, an+1 = , bn+1 = (n ≥ 0). а) Докажите, что обе эти последовательности имеют общий предел. Этот предел называется арифметико-гармоническим средним чисел a и b. б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b. в) Пусть a = 1, b = k. Как последовательность {bn} связана с последовательностью {xn} из задачи 61299?
Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу a0 = a, b0 = b, an+1 = , bn+1 = (n ≥ 0).
Обозначим его через ν(a, b). Докажите, что величина
ν(a, b) связана с μ(a, b) (см. задачу 61322) равенством
ν(a, b)·μ(1/a, 1/b) = 1.
Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 112] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|