ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 112]      



Задача 79385

Темы:   [ Теория игр (прочее) ]
[ Наибольшая или наименьшая длина ]
[ Рекуррентные соотношения (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если:   а)  r > l/3;   б)   r > l/4;   в)   r > l/5;   г)   r > l/7.

Прислать комментарий     Решение

Задача 79645

Темы:   [ Теория игр (прочее) ]
[ Наибольшая или наименьшая длина ]
[ Рекуррентные соотношения (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 7,8

См. задачу 79385 в) и г).

Прислать комментарий     Решение

Задача 109517

Темы:   [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Рекуррентные соотношения (прочее) ]
[ Оценка + пример ]
Сложность: 5+
Классы: 9,10,11

Автор: Ляшко О.

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F . При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Прислать комментарий     Решение


Задача 105191

Темы:   [ Периодичность и непериодичность ]
[ Теоремы о среднем значении ]
[ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 6
Классы: 10,11

Для заданных натуральных чисел k0<k1<k2 выясните, какое наименьшее число корней на промежутке [0; 2π) может иметь уравнение вида

sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0

где A1, A2 – вещественные числа.
Прислать комментарий     Решение

Задача 65311

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Средние величины ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4+
Классы: 9,10,11

Правильная игральная кость бросается много раз. Известно, что в какой-то момент сумма очков стала равна ровно 2010.
Найдите математическое ожидание числа бросков, сделанных к этому моменту.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .