ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 60551

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 6,7,8,9

Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

Прислать комментарий     Решение

Задача 65620

Темы:   [ Числовые последовательности (прочее) ]
[ Арифметическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 9,10,11

У чисел 1000², 1001², 1002², ... отбрасывают по две последние цифры. Сколько первых членов полученной последовательности образуют арифметическую прогрессию?

Прислать комментарий     Решение

Задача 60553

 [Формула Лежандра]
Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Число n! разложено в произведение простых чисел:     Докажите равенство  

Прислать комментарий     Решение

Задача 60559

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 9,10,11

Существует ли такое целое число r, что    является целым числом при любом n?

Прислать комментарий     Решение

Задача 77934

Темы:   [ НОД и НОК. Взаимная простота ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 10,11

Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее кратное любых двух из них больше чем 1951.
Доказать, что сумма обратных величин этих чисел меньше 2.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .