Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 56]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Существуют ли такие целые числа
a и
b, что
а) уравнение
x² +
ax + b = 0 не имеет корней, а уравнение [
x²] +
ax + b = 0 имеет?
б) уравнение
x² + 2
ax + b = 0 не имеет корней, а уравнение [
x²] + 2
ax + b = 0 имеет?
|
|
|
Сложность: 3+ Классы: 10,11
|
Решить уравнение x³ – [x] = 3.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 56]