|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости нарисовали 10 равных отрезков и отметили все их точки пересечения. Оказалось, что каждая точка пересечения делит любой проходящий через неё отрезок в отношении 3 : 4. Каково наибольшее возможное число отмеченных точек? Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты. На высоте конуса как на диаметре построена сфера. Площадь части поверхности сферы, лежащей вне конуса, равна площади основания конуса. Найдите угол в осевом сечении конуса. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Докажите равенство (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.
Является ли число 49 + 610 + 320 простым?
Докажите, что при любом натуральном n число n² + 8n + 15 не делится на n + 4.
Положительные числа a, b, c, d таковы, что a ≤ b ≤ c ≤ d и a + b + c + d ≥ 1. Докажите, что a² + 3b² + 5c² + 7d² ≥ 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|