ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 60887

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Пусть  (m, n) = 1.  Докажите, что сумма длин периода и предпериода десятичного представления дроби  m/n  не превосходит φ(n).

Прислать комментарий     Решение

Задача 78544

Темы:   [ Формула включения-исключения ]
[ Функция Эйлера ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 10,11

Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.

Прислать комментарий     Решение

Задача 66758

Темы:   [ Замощения костями домино и плитками ]
[ Функция Эйлера ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно  $n > 2$  различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)

Прислать комментарий     Решение

Задача 60773

Темы:   [ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
[ Функция Эйлера ]
Сложность: 4-
Классы: 8,9,10

Найдите сумму всех правильных несократимых дробей со знаменателем n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .