Страница:
<< 1 2 3 4 5 [Всего задач: 24]
|
|
Сложность: 4- Классы: 10,11
|
Пусть (m, n) = 1. Докажите, что сумма длин периода и предпериода десятичного представления дроби m/n не превосходит φ(n).
|
|
Сложность: 4- Классы: 10,11
|
Имеется бесконечное количество карточек, на каждой из которых написано какое-то
натуральное число. Известно, что для любого натурального числа n существуют
ровно n карточек, на которых написаны делители этого числа. Доказать, что
каждое натуральное число встречается хотя бы на одной карточке.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно $n > 2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите сумму всех правильных несократимых дробей со знаменателем n.
Страница:
<< 1 2 3 4 5 [Всего задач: 24]