Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 517]
В трапеции ABCD AB – основание, AC = BC, H – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.
|
|
Сложность: 4+ Классы: 8,9,10
|
Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.
[Теорема о бабочке]
|
|
Сложность: 5- Классы: 8,9
|
Через середину C произвольной хорды AB окружности проведены
две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что PC = QC.
[Теорема Морли]
|
|
Сложность: 5 Классы: 9,10,11
|
В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний.
|
|
Сложность: 5 Классы: 9,10,11
|
В треугольнике $ABC$ чевианы $AP$ и $AQ$ симметричны относительно биссектрисы. Точки $X$, $Y$ – проекции $B$ на $AP$ и $AQ$ соответственно, а точки $N$ и $M$ – проекции $C$ на $AP$ и $AQ$ соответственно. Докажите, что $XM$ и $NY$ пересекаются на $BC$.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 517]