Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 517]      



Задача 53516

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. Продолжения боковых сторон AB и DC пересекаются в точке K, образуя треугольник AKD с углом 45° при вершине K. Площадь трапеции ABCD равна P. Найдите площадь треугольника AKD.

Прислать комментарий     Решение

Задача 53581

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Через вершину C параллелограмма ABCD проведена произвольная прямая, пересекающая продолжения сторон AB и AD в точках K и M соответственно. Докажите, что произведение BK·DM не зависит от того, как проведена эта прямая.

Прислать комментарий     Решение

Задача 53632

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AA1 и BB1. Найдите AC, если
  а)  AA1 = 4,  BB1 = 5,  BC = 6;
  б)  A1C = 8,  B1C = 5,  BB1 = 12.

Прислать комментарий     Решение

Задача 55075

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

Прислать комментарий     Решение

Задача 66809

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Автор: Dadgarnia A.

В треугольнике ABC A=45. Точка A диаметрально противоположна A на описанной окружности треугольника. Точки E, F на сторонах AB, AC соответственно таковы. что AB=BE, AC=CF. Пусть K – вторая точка пересечения окружностей AEF и ABC. Докажите, что прямая EF делит пополам отрезок AK.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .