Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 512]
Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.
Четырёхугольник ABCD вписан в окружность, причём касательные в точках B и D пересекаются в точке K, лежащей на прямой AC.
а) Докажите, что AB·CD = BC·AD.
б) Прямая, параллельная KB, пересекает прямые BA, BD и BC в точках P, Q и R. Докажите, что PQ = QR.
В треугольнике ABC на сторонах AB и BC выбраны точки E и F так, что AE = EF и ∠CEF = ∠B. Точка K на отрезке EC такова, что EK = FC.
Докажите, что отрезок, соединяющий середины отрезков AF и EC, в два раза короче KF.
|
|
Сложность: 4- Классы: 8,9,10
|
Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает
на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
[Геометрический смысл классических неравенств]
|
|
Сложность: 4- Классы: 8,9
|
Основания BC и AD трапеции ABCD равны a и b. Проведены четыре прямые, параллельные основаниям. Первая проходит через середины боковых сторон, вторая – через точку пересечения диагоналей трапеции, третья разбивает трапецию на две подобные, четвёртая – на две равновеликие. Найдите отрезки этих прямых, заключённые внутри трапеции, и расположите найденные величины по возрастанию.
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 512]