Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 517]
Докажите, что при инверсии прямая, проходящая через центр инверсии, переходит сама в себя, а прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.
Докажите, что при инверсии окружность, проходящая через центр инверсии, переходит в прямую, не проходящую через центр инверсии.
Докажите, что при инверсии окружность, не проходящая через центр инверсии, переходит в окружность, также не проходящую через центр инверсии.
|
|
Сложность: 4- Классы: 9,10,11
|
Вписанная окружность треугольника ABC касается его сторон ВС, АС и АВ в точках A', B' и C' соответственно. Точка K – проекция точки C' на прямую A'B'. Докажите, что KC' – биссектриса угла AKB.
В трапеции ABCD боковая сторона AB перпендикулярна основанию
BC. Окружность проходит через точки C и D и касается прямой AB в точке E.
Найдите расстояние от точки E до прямой CD, если AD = 4, BC = 3.
Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 517]