Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 517]
В треугольнике KLM KM = k, ML = m, точка O – центр описанной окружности. Прямая KN, перпендикулярная прямой MO, пересекает продолжение стороны LM в точке N. Найдите LN.
На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.
Окружность пересекает одну сторону острого угла AOB в точках C и A (C лежит между O и A) и касается другой стороны угла в точке B. На дуге AB, не содержащей точки C, взята точка D. Расстояния от точки D до прямых AC, OB и AB равны a, b и c соответственно. Найдите расстояние от точки D до прямой BC.
На продолжении биссектрисы AL треугольника ABC за точку A
взята такая точка D, что AD = 10 и ∠BDC = ∠BAL = 60°.
Найдите площадь треугольника ABC. Какова наименьшая площадь треугольника BDC при данных условиях?
Площадь треугольника ABC равна 9. На продолжении его биссектрисы BL за точку B взята такая точка D, что ∠ADC = ∠ABL = 45°.
Найдите длину отрезка BD. Какова наименьшая площадь треугольника ADC при данных условиях?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 517]