Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 149]
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.
Даны две окружности. Общая внешняя касательная касается их
в точках
A и
B . Точки
X ,
Y на окружностях таковы, что
существует окружность, касающаяся данных в этих точках, причем
одинаковым образом (внешним или внутренним). Найдите
геометрическое место точек пересечения прямых
AX и
BY .
Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)
Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём AC < ½ AB. Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна
AB.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 149]