Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Вниз   Решение


Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

ВверхВниз   Решение


В пирамиде ABCD рёбра AD , BD и CD равны 5, расстояние от точки D до плоскости ABC равно 4. Найдите радиус окружности, описанной около треугольника ABC .

ВверхВниз   Решение


В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

ВверхВниз   Решение


Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

ВверхВниз   Решение


У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.

ВверхВниз   Решение


Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

ВверхВниз   Решение


Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?

ВверхВниз   Решение


На оси Ox произвольно расположены различные точки  X1, ..., Xnn ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть  y = f1(x),  ...,  y = fm(x)  – соответствующие параболы. Докажите, что парабола  y = f1(x) + ... + fm(x)  пересекает ось Ox в двух точках.

ВверхВниз   Решение


Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

ВверхВниз   Решение


Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

ВверхВниз   Решение


Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

ВверхВниз   Решение


Решите в натуральных числах уравнение  3x + 4y = 5z.

ВверхВниз   Решение


На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

Вверх   Решение

Задача 58115
Темы:    [ Выпуклые многоугольники ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Решение

Пусть P — точка пересечения диагоналей A1A4 и A2A5 выпуклого семиугольника A1...A7. Одна из диагоналей A3A7 и A3A6, для определенности диагональ A3A6, не проходит через точку P. Точек пересечения диагоналей шестиугольника A1...A6 конечное число, поэтому вблизи точки A7 можно выбрать такую точку A7', что прямые A1A7',..., A6A7' не проходят через эти точки, т. е. семиугольник A1...A7' неособый.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 1
Название Выпуклые многоугольники
Тема Выпуклые многоугольники
задача
Номер 22.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .