ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите для каждого натурального числа n > 1 равенство: [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn]. а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины? б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины? Дан многочлен P(x) степени n>5 с целыми коэффициентами, имеющий n различных целых корней. Докажите, что многочлен P(x)+3 имеет n различных действительных корней. К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.
Дан отрезок AB. Найдите на плоскости множество таких точек C, что медиана треугольника ABC, проведённая из вершины A, равна высоте, проведённой из вершины B.
Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции:
по любым числам x и y он вычисляет x + y, x − y и |
Задача 54324
УсловиеДан треугольник ABC. Окружность радиуса R касается прямых
AB и BC в точках A и C и пересекает медиану BD в точке L, причём BL = 5/9 BD. Решение Поскольку BA = BC, то треугольник ABC – равнобедренный. Его медиана BD является высотой и биссектрисой. Поэтому центр O данной окружности лежит на луче BD. Ответ27R²/100. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке