ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша? Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12. Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее. На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть? Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом. Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|. |
Задача 52645
Условие
Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.
Подсказка
Отрезки касательных, проведённых из одной точки к окружности, равны между собой.
Решение
Отрезки касательных, проведённых из одной точки к окружности, равны между собой. Точки касания делят каждую сторону четырёхугольника на две части. Обозначим последовательно их длины, используя одну букву для равных отрезков, начиная от какой-нибудь из вершин: a, b, b, c, c, d, d, a. Ясно, что суммы противоположных сторон состоят из одинаковых слагаемых.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке