ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/ Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 . Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор. Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?
В пространстве заданы три луча: DA , DB и DC , имеющие общее начало
D , причём Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. |
Задача 102705
УсловиеДаны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. РешениеПо формуле для расстояния между двумя точками AB² = (–6 – 3)² + (–2 – 5)² = 130, AC² = (0 – 3)² + (–6 – 5)² = 130. Значит, AB = AC. Следовательно, треугольник ABC – равнобедренный. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке