Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дана клетчатая полоса  1×N.  Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?

Вниз   Решение


Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.

ВверхВниз   Решение


Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?

ВверхВниз   Решение


В четырехугольнике $ABCD$ $AB\perp CD$ и $AD\perp BC$. Докажите, что существует точка, расстояния от которой до прямых, содержащих стороны четырехугольника, пропорциональны этим сторонам.

ВверхВниз   Решение


Окружность с центром F и парабола с фокусом F пересекаются в двух точках.
Докажите, что на окружности найдутся такие четыре точки A, B, C, D, что прямые AB, BC, CD и DA касаются параболы.

ВверхВниз   Решение


На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

ВверхВниз   Решение


Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.

ВверхВниз   Решение


Некоторые клетки доски $100 \times 100$ покрашены в чёрный цвет. Во всех строках и столбцах, где есть чёрные клетки, их количество нечётно. В каждой строке, где есть чёрные клетки, поставим красную фишку в среднюю по счёту чёрную клетку. В каждом столбце, где есть чёрные клетки, поставим синюю фишку в среднюю по счёту чёрную клетку. Оказалось, что все красные фишки стоят в разных столбцах, а синие фишки — в разных строках. Докажите, что найдётся клетка, в которой стоят и синяя, и красная фишки.

ВверхВниз   Решение


Основания BC и AD трапеции ABCD равны a и b. Проведены четыре прямые, параллельные основаниям. Первая проходит через середины боковых сторон, вторая – через точку пересечения диагоналей трапеции, третья разбивает трапецию на две подобные, четвёртая – на две равновеликие. Найдите отрезки этих прямых, заключённые внутри трапеции, и расположите найденные величины по возрастанию.

ВверхВниз   Решение


В таблице $n\times n$ стоят все целые числа от 1 до $n^2$, по одному в клетке. В каждой строке числа возрастают слева направо, в каждом столбце – снизу вверх. Докажите, что наименьшая возможная сумма чисел на главной диагонали, идущей сверху слева вниз направо, равна $1^2+2^2+\ldots+n^2$.

ВверхВниз   Решение


Автор: Ботин Д.А.

Из кубика Рубика 3×3×3 удалили центральный шарнир и восемь угловых кубиков. Можно ли оставшуюся фигуру из 18 кубиков составить из шести брусков размером 3×1×1?

Вверх   Решение

Задача 103773
Темы:    [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7
Из корзины
Прислать комментарий

Условие

Автор: Ботин Д.А.

Из кубика Рубика 3×3×3 удалили центральный шарнир и восемь угловых кубиков. Можно ли оставшуюся фигуру из 18 кубиков составить из шести брусков размером 3×1×1?


Ответ

 Да, см. рисунок.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1993
класс
1
Класс 7
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .