Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.

Вниз   Решение


Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

ВверхВниз   Решение


Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.
Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.

ВверхВниз   Решение


Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

ВверхВниз   Решение


Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.

Вверх   Решение

Задача 108053
Темы:    [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.


Подсказка

Средняя линия трапеции равна полусумме оснований.


Решение

Пусть окружность радиуса r с центром A касается стороны угла в точке A1, окружность радиуса R с центром B касается той же стороны угла в точке B1, а O1 – проекция центра O окружности с диаметром AB на эту сторону. Линия центров касающихся окружностей проходит через точку их касания, поэтому
AB = r + R.  Значит, радиус окружности с диаметром AB равен  ½ (R + r).  С другой стороны, отрезок OO1 – средняя линия прямоугольной трапеции AA1B1B. Поэтому  OO1 = ½ (AA1 + BB1) = ½ (R + r) = ½ AB.  Следовательно, окружность с диаметром AB касается стороны угла.

Замечания

3 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4333
олимпиада
Название Турнир городов
Турнир
Дата 1991/1992
Номер 13
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .