Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?

Вниз   Решение


По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

ВверхВниз   Решение


Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали?

ВверхВниз   Решение


Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что  OM = ON  и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если  ∠LOM = 55°  и  ∠KON = 90°.

ВверхВниз   Решение


Найдите площадь трапеции ABCD с боковой стороной  CD = 3,  если расстояния от вершин A и B до прямой CD равны 5 и 7 соответственно.

ВверхВниз   Решение


В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.

ВверхВниз   Решение


Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

ВверхВниз   Решение


В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
  а) Докажите, что если n делится на 3, то такая раскраска возможна.
  б) Докажите, что если если такая раскраска возможна, то n делится на 3.

ВверхВниз   Решение


Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой?

ВверхВниз   Решение


Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.

Вверх   Решение

Задача 108078
Темы:    [ Биссектриса угла (ГМТ) ]
[ Вневписанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение, в котором биссектриса делит сторону ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.


Подсказка

Докажите, что E – центр вневписанной окружности треугольника ADB.


Решение 1

Точка E равноудалена от прямых AD, BC и AB, поскольку она лежит на биссектрисах DE и BE углов ADC и ABC. Значит, E – центр вневписанной окружности треугольника ADB. Поэтому точка E лежит на биссектрисе внешнего угла при вершине A треугольника ABD, а так как AD – биссектриса угла BAC, то лучи AE и AD делят развёрнутый угол с вершиной A на три равных угла. Следовательно, каждый из них равен 60°, а  ∠A = 120°.


Решение 2

Проведём через вершину B прямую, параллельную AD, до пересечения с прямой AC в точке G. Заметим, что  ∠GBA = ∠BAD = ∠DAE = ∠BGC,  то есть треугольник BAG равнобедренный  (AB = AG).  Как известно, биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Применяя это свойство к биссектрисам DE и BE, получим  DA : DC = AE : EC = BA : BC.  Но  DA : DC = BG : BC  (треугольники ACD и GCB подобны). Значит,  BA = BG  и треугольник BAG – равносторонний. Поэтому  ∠BAG = 60°.


Ответ

120°.

Замечания

5 баллов

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4358
олимпиада
Название Турнир городов
Турнир
Номер 18
Дата 1996/1997
вариант
Вариант весенний тур, основной вариант, 10-11 класс
Задача
Номер 2
журнал
Название "Квант"
год
Год 1997
выпуск
Номер 3
Задача
Номер М1591

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .