ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть? По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г. Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали? Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что OM = ON и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если ∠LOM = 55° и ∠KON = 90°. Найдите площадь трапеции ABCD с боковой стороной CD = 3, если расстояния от вершин A и B до прямой CD равны 5 и 7 соответственно. В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны. Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ. В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов. Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой? Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3. В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A. |
Задача 108078
УсловиеВ треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A. ПодсказкаДокажите, что E – центр вневписанной окружности треугольника ADB. Решение 1Точка E равноудалена от прямых AD, BC и AB, поскольку она лежит на биссектрисах DE и BE углов ADC и ABC. Значит, E – центр вневписанной окружности треугольника ADB. Поэтому точка E лежит на биссектрисе внешнего угла при вершине A треугольника ABD, а так как AD – биссектриса угла BAC, то лучи AE и AD делят развёрнутый угол с вершиной A на три равных угла. Следовательно, каждый из них равен 60°, а ∠A = 120°.
Решение 2Проведём через вершину B прямую, параллельную AD, до пересечения с прямой AC в точке G. Заметим, что ∠GBA = ∠BAD = ∠DAE = ∠BGC, то есть треугольник BAG равнобедренный (AB = AG). Как известно, биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Применяя это свойство к биссектрисам DE и BE, получим DA : DC = AE : EC = BA : BC. Но DA : DC = BG : BC (треугольники ACD и GCB подобны). Значит, BA = BG и треугольник BAG – равносторонний. Поэтому ∠BAG = 60°. Ответ120°. Замечания5 баллов Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке