ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата. Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))? Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние. Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться? В треугольнике ABC провели биссектрису CK, а в треугольнике BCK – биссектрису KL. Прямые AC и KL пересекаются в точке M. Известно, что Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток. На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток. На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась? Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
На электронных часах Казанского вокзала высвечиваются часы и минуты (например, 17:36). Сколько времени в течение суток на них
Серединный перпендикуляр к стороне BC
треугольника ABC пересекает сторону AB в точке D ,
а продолжение стороны AC за точку A – в точке E .
Докажите, что AD |
Задача 108934
Условие
Серединный перпендикуляр к стороне BC
треугольника ABC пересекает сторону AB в точке D ,
а продолжение стороны AC за точку A – в точке E .
Докажите, что AD Решение
Поскольку точка D лежит на серединном пепрендикуляре
к отрезку BC , треугольник BCD – равнобедренный.
Поэтому Поскольку луч CD пересекает отрезок AB , концы которого лежат на сторонах угла ACB , этот луч проходит между сторонами угла ACB . Значит, Таким образом, в треугольнике ADE сторона AD , лежащая против угла AED , равного β , меньше стороны AE , лежащей против угла ADE , равного α . Что и требовалось доказать. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке