ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равенстве (ayb)c = – 64y6 замените a, b и c целыми числами, отличными от 1, так, чтобы получилось тождество. У Пети в бутылке было "Фанты" на 10% больше, чем у Васи. Петя отпил из своей бутылки 11% её содержимого, а Вася из своей – 2% содержимого. У кого после этого осталось больше "Фанты"? Имеется таблица n×n, в n – 1 клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны? Решите неравенство: У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая? На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B. Найдите наибольшее значение выражения x²y – y²x, если 0 ≤ x ≤ 1 и 0 ≤ y ≤ 1. На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.) Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD. На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе? |
Задача 109482
Условие
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые
(которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой.
Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Решение
Пронумеруем монеты слева направо. Так как среди монет есть обязательно настоящая и фальшивая,
то первая монета настоящая, а четвертая– фальшивая. Необходимо определить вид второй и третьей монет.
Настоящие монеты лежат левее фальшивых, значит возможны следующие случаи:
1)настоящая, настоящая, настоящая, фальшивая;
2)настоящая, настоящая, фальшивая, фальшивая;
3)настоящая, фальшивая, фальшивая, фальшивая.
Ответ
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке