ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| . Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда |PQ| = |QR|. Дано 101-элементное подмножество A множества S = {1, 2, ..., 1000000}. У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей. |
Задача 109539
Условие
У каждого из жителей города N знакомые составляют не менее 30 населения города.
Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так
провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины
жителей.
РешениеРешение I основано на следующей лемме.
Лемма.
Пусть S – произвольное непустое множество жителей. Тогда в
городе N найдется житель, знакомый не менее чем с 30% жителей из S .
Обозначим через |X| количество жителей в множестве X .
Оценим общее количество (упорядоченных) пар знакомых (t,s) , где t –
произвольный человек, а s – человек из S . Для каждого s0 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке