Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

Вниз   Решение


Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?

ВверхВниз   Решение


Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

ВверхВниз   Решение


На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.

ВверхВниз   Решение


Известно, что существует число S , такое, что если a+b+c+d=S и +++=S ( a , b , c , d отличны от нуля и единицы), то + + += S . Найти S .

ВверхВниз   Решение


Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?

ВверхВниз   Решение


Докажите, что если a, b, c – положительные числа и  ab + bc + ca > a + b + c,  то  a + b + c > 3.

ВверхВниз   Решение


Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел a, b, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  x² – ax + b = 0  и  x² – bx + a = 0  имеет два целых корня?

ВверхВниз   Решение


Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

ВверхВниз   Решение


В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

ВверхВниз   Решение


Автор: Гулько С.

В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.

Вверх   Решение

Задача 109574
Темы:    [ Принцип Дирихле (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Гулько С.

В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.


Решение

  Докажем утверждение индукцией по числу n жителей города. База  (n ≤ 2)  очевидна.
  Шаг индукции. Пусть  n ≥ 3,  а m – общее количество звонков в этот день. По условию  m ≤ n,  поэтому найдётся житель A, разговаривавший не более чем с двумя жителями (в противном случае  m3n/2 > n).  По предположению индукции, всех жителей города, кроме A, можно разбить на три группы так, чтобы выполнялось условие задачи. Житель A не разговаривал с жителями, входящими в одну из групп, поэтому его можно добавить к этой группе, сохранив в силе требуемое утверждение.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 4
класс
Класс 11
задача
Номер 94.4.11.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .