Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус окружности, описанной около треугольника, т.е.

S$\scriptstyle \Delta$ = $\displaystyle {\frac{abc}{4R}}$,

где a, b, c — стороны треугольника, R — радиус его описанной окружности.

Вниз   Решение


Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

ВверхВниз   Решение


Автор: Фольклор

Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.

ВверхВниз   Решение


Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

ВверхВниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Докажите, что если (x+)(y+)=1 , то x+y=0 .

ВверхВниз   Решение


Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.

ВверхВниз   Решение


Автор: Фомин А.

Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.

Вверх   Решение

Задача 109925
Темы:    [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Автор: Фомин А.

Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.


Решение

Пусть сумма чисел в наборе равна M, тогда число a из набора заменяется на число  b = M – a.  Просуммируем эти равенства для всех a:
b1 + ... + b1997 = 1997M – (a1 + ... + a1997),  откуда  M = 0,  так как   b1 + ... + b1997 = a1 + ... + a1997 = M.  Значит, для любого a число  b = – a  также входит в набор и все числа разбиваются на пары  (a, – a).  Из нечётности их количества следует, что в набор входит число  a = – a,  то есть  a = 0.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 4
Класс
Класс 9
задача
Номер 97.4.9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .