Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Вниз   Решение


а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

ВверхВниз   Решение


Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?

ВверхВниз   Решение


Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

ВверхВниз   Решение


Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

ВверхВниз   Решение


Автор: Храмцов Д.

В последовательности натуральных чисел {an},  n = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных n и m выполнено неравенство     Докажите, что тогда  |an – n| < 2000000  для всех натуральных n.

ВверхВниз   Решение


Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.).

На клетке, помеченной звездочкой, стоит кентавр – фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?

ВверхВниз   Решение


Найдите объём тетраэдра ABCD с рёбрами AB=3 , AC=5 и BD = 7 , если расстояние между серединами M и N его рёбер AB и CD равно 2, а прямая AB образует равные углы с прямыми AC , BD и MN .

ВверхВниз   Решение


Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

ВверхВниз   Решение


Автор: Сонкин М.

Докажите, что если

++=++= = ++

для некоторых a , b , c , x , y , z , то x=y=z или a=b=c .

ВверхВниз   Решение


Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Вверх   Решение

Задача 110134
Темы:    [ Признаки делимости на 11 ]
[ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?


Решение

  Обозначим цифры, выписываемые игроками, последовательно через a1, a2, ..., цифры с нечётными номерами выписывает первый, а с чётными – второй. Рассмотрим остатки ri от деления на 11 знакопеременных сумм S0 = 0,  S1 = a1, S2 = a1a2,  ...,  Sk = a1a2 + a3 – ... + (–1)k–1ak.
  Согласно признаку делимости на 11, после k-го хода на доске возникнет число, кратное 11, тогда и только тогда, когда  rk совпадает с одним из r0, ..., rk–1. Расположим эти остатки по кругу по часовой стрелке от 0 до 10 и изобразим последовательность ходов как процесс перемещения по кругу по неповторяющимся остаткам ri. При этом первый игрок i-м ходом "прибавляет" к ri–1 любое число ai от 1 до 9, а второй – любое число от –1 до –9. Таким образом, кроме повтора уже встречавшегося остатка, первому игроку запрещён ход против часовой стрелки на 1, а второму – ход по часовой стрелке на 1. После i-го хода свободными останутся  10 – i  остатков. Игрок гарантированно может сделать ход, если есть хотя бы два свободных остатка, значит, первые восемь ходов игроки сделать смогут, а 11-й ход сделать нельзя никогда.
  Рассмотрим ситуацию после седьмого хода (это ход первого), когда свободны 3 остатка. Разберём три случая.
  1) Свободные остатки расположены подряд:  i – 1,  i,  i + 1.  Тогда второй выписывает число с остатком i (занимает остаток i), первый –  i + 1,  а второй
i – 1  и выигрывает.
  2) Остатки расположены так: два рядом – i,  i + 1  и один отдельно – j. Тогда второй занимает один из остатков i,  i + 1,  далее либо первый занимает остаток  i + 1,  второй – j и выигрывает, либо первый занимает j, а второй – один из оставшихся i,   i + 1 и выигрывает.
  3) Никакие два остатка не стоят рядом: i, j, k. Тогда второй может занять один из них и после хода первого, второй может занять последний свободный остаток и выиграть.


Ответ

Второй игрок.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2003
Этап
Вариант 4
Класс
Класс 9
задача
Номер 03.4.9.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .