Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

Вниз   Решение


В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

ВверхВниз   Решение


Решить уравнение 2-log sin x cos x=log cos x sin x.

ВверхВниз   Решение


Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a .

ВверхВниз   Решение


Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

ВверхВниз   Решение


Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.

ВверхВниз   Решение


Дан треугольник ABC и точка P внутри него. A' , B' , C' – проекции P на прямые BC , CA , AB . Докажите, что центр окружности, описанной около треугольника A'B'C' , лежит внутри треугольника ABC .

Вверх   Решение

Задача 110789
Темы:    [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Гомотетичные многоугольники ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Дан треугольник ABC и точка P внутри него. A' , B' , C' – проекции P на прямые BC , CA , AB . Докажите, что центр окружности, описанной около треугольника A'B'C' , лежит внутри треугольника ABC .

Решение

Пусть A1 , B1 , C1 – точки, симметричные P относительно BC , CA , AB . Так как CA1=CP=CB1 , серединный перпендикуляр к отрезку A1B1 совпадает с биссектрисой угла A1CB1 . Так как A1CB1=2 ACB , эта биссектриса проходит внутри угла ACB (рис.8.6). Аналогично, серединные перпендикуляры к отрезкам A1C1 и B1C1 проходят внутри соответствующих углов треугольника ABC . Следовательно, центр Q окружности, описанной около треугольника A1B1C1 , лежит внутри треугольника ABC . Так как треугольник A'B'C' получается из треугольника A1B1C1 гомотетией с центром P и коэффициентом , центр окружности, описанной около A'B'C' , совпадает с серединой отрезка PQ и, значит, лежит внутри ABC .


Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2006
Класс
Класс 8
задача
Номер 86

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .