Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.

Вниз   Решение


Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{20}{9}}$. Найдите отношение отрезков OB и OA.

ВверхВниз   Решение


Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?

ВверхВниз   Решение


Найти решение уравнения     в целых числах.

ВверхВниз   Решение


В треугольнике ABC точка M – середина стороны BC, AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что  XY || BC .

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

ВверхВниз   Решение


Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипотенузы. Найдите катеты.

Вверх   Решение

Задача 111467
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипотенузы. Найдите катеты.

Решение

Пусть r – радиус окружности с центром O , вписанной в прямоугольный треугольник ABC с гипотенузой AB , OA= , OB = . Поскольку AO и BO – биссектрисы острых углов треугольника,

AOB = 90o+ ACB = 90o+· 90o = 135o.

По теореме косинусов
AB = = =5.

Высота треугольника AOB , проведённая из вершины O равна r . Выражая двумя способами площадь этого тругольника, получим, что
· 5r = · · · ,

откуда r =1 . Пусть M – точка касания вписанной окружности треугольника ABC с катетом AC . Тогда
MC = OM = r = 1, AM = = = 2.

Следовательно,
AC = AM+MC = 2+1=3, BC = = = 4.


Ответ

3 Х 4.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4573

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .