ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна. В описанном четырёхугольнике ABCD AB = CD ≠ BC. Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый. Постройте правильный десятиугольник.
Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2. Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n), (a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно. а) Укажите два прямоугольных треугольника, из
которых можно сложить треугольник, длины сторон и площадь
которого — целые числа.
11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.
|
Задача 22001
Условие11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.
РешениеЗанумеруем кружки числами от 1 до 5 и вместо каждого пионера будем рассматривать тот набор кружков - подмножество множества {1, 2, 3, 4, 5} - который состоит из посещаемых им кружков. Осталось разбить 32 подмножества указанного множества на 10 наборов так, чтобы в каждом из наборов из любых двух множеств этого набора одно содержалось в другом. В качестве таких наборов рассмотрим следующие: [∅, {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5}], [{2}, {2,5}, {1,2,5}, {1,2,3,5}], [{3}, {1,3}, {1,3,4}, {1,3,4,5}], [{4}, {1,4}, {1,2,4}, {1,2,4,5}], [{5}, {1,5}, {1,3,5}], [{2,4}, {2,4,5}, {2,3,4,5}], [{3,4}, {3,4,5}], [{3,5}, {2,3,5}], [{4,5}, {1,4,5}], [{2,3}, {2,3,4}]. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке