Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Вниз   Решение


Что больше:  1234567/7654321  или  1234568/7654322?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?

ВверхВниз   Решение


Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

ВверхВниз   Решение


Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ?

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .

ВверхВниз   Решение


Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

Вверх   Решение

Задача 30328
Темы:    [ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 5,6,7
Из корзины
Прислать комментарий

Условие

Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?


Решение

На первое место можно поставить любую из трёх цифр, на второе – любую из двух оставшихся, а на третье – последнюю оставшуюся цифру. Таким образом, всего получается 6 чисел.


Ответ

3! = 6  чисел.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 3
Название Комбинаторика-1
Тема Классическая комбинаторика
задача
Номер 015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .