Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

Вниз   Решение


Число x таково, что число x + $ {\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном n число xn + $ {\frac{1}{x^n}}$ также является целым.

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.

ВверхВниз   Решение


Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

ВверхВниз   Решение


Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

ВверхВниз   Решение


Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного куба между серединой его ребра и наиболее удалённой от неё точки поверхности куба.

ВверхВниз   Решение


В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.

Вверх   Решение

Задача 30787
Тема:    [ Деревья ]
Сложность: 3+
Классы: 7,8
Из корзины
Прислать комментарий

Условие

В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.


Решение

Рассмотрим произвольную компоненту связности этого графа. Она не является деревом, так как в ней нет висячей вершины (см. задачу 30786). Значит, в ней есть цикл.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 13
Название Графы-2
Тема Теория графов
задача
Номер 009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .