Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Найдите  (xn – 1, xm – 1).

Вниз   Решение


Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

ВверхВниз   Решение


Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины?

ВверхВниз   Решение


Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

ВверхВниз   Решение


Пусть  (P(x), Q(x)) = D(x).
Докажите, что существуют такие многочлены U(x) и V(x), что  degU (x) < deg Q(x),  deg V(x) < deg P(x)  и   P(x)U(x) + Q(x)V(x) = D(x).

ВверхВниз   Решение


Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

ВверхВниз   Решение


Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

ВверхВниз   Решение


Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей.

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

Вверх   Решение

Задача 30863
Тема:    [ Неравенство Коши ]
Сложность: 2+
Классы: 7
Из корзины
Прислать комментарий

Условие

Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.


Решение

Перегруппировав члены, получаем  (x – y)² ≥ 0.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 020

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .