ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямые AP, BP и CP пересекают стороны
треугольника ABC (или их продолжения) в точках A1, B1 и C1.
Докажите, что:
На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.) В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики. Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить? В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими? У Тани есть 4 одинаковые с виду гири, массы которых равны 1001, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.) Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны. Докажите, что На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1. a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0 Докажите тождества: а) б) в) г) д) (Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги. |
Задача 34989
УсловиеСолдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги. РешениеОбозначим через a1, a2, ..., an рост солдат первой шеренги в порядке убывания, а через b1, b2, ..., bn рост солдат второй шеренги в порядке убывания (те же обозначения используем и для самих солдат). Пусть утверждение задачи неверно: ak > bk для некоторого k. Это означает, что до перестраивания по росту солдат ak мог стоять только перед одним из k – 1 солдат b1, b2, ..., bk–1. То же справедливо и для солдат a1, a2, ..., ak–1, поскольку они не ниже солдата ak. Итак, до перестраивания шеренг k солдат a1, a2, ..., ak могли стоять только перед k – 1 солдатами b1, b2, ..., bk–1. Противоречие. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке