ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета. На столе лежат купюры достоинством 1, 2, .. , 2n тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?
На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.
|
Задача 52485
Условие
На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.
Подсказка
OC — биссектриса угла DOB.
Решение
Рассмотрим случай, когда точки D и C лежат по разные
стороны от AO. Пусть
= 360o - (360o - 2
Значит, OC — биссектриса угла DOB.
Поскольку треугольник DOB равнобедренный, то прямая OC —
серединный перпендикуляр к отрезку DB. Следовательно, CD = CB.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке