Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Дужин С.В.

В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета.

Вниз   Решение


На столе лежат купюры достоинством 1, 2, .. , 2n тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?

ВверхВниз   Решение


На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.

Вверх   Решение

Задача 52485
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.


Подсказка

OC — биссектриса угла DOB.


Решение

Рассмотрим случай, когда точки D и C лежат по разные стороны от AO. Пусть $ \angle$DOC = $ \alpha$. Тогда

$\displaystyle \angle$DAC = 180o - $\displaystyle \alpha$$\displaystyle \angle$DOB = 360o - 2$\displaystyle \angle$DAB =

= 360o - (360o - 2$\displaystyle \alpha$) = 2$\displaystyle \alpha$.

Значит, OC — биссектриса угла DOB. Поскольку треугольник DOB равнобедренный, то прямая OC — серединный перпендикуляр к отрезку DB. Следовательно, CD = CB.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 148
журнал
Название "Квант"
год
Год 1980
выпуск
Номер 3
Задача
Номер М611

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .